Sunday, July 6, 2014

Volume of a Bottle (Approximate)

This blog entry will deal with finding two formulas (approximate?) for finding the volume of a bottle. This includes plastic water bottles, beer bottles, and carry bottles.

In order to know how to find the volume, let's loom at the basic parts. This was accomplished by a basic search on Google:

Assume that the neck and body are cylinders. The shape of the shoulder is going to vary. First, let's work with a bottle with a linear shoulder, and one with a parabolic shoulder. The volume of the bottle will be measured in three parts.

V = VN + VS + VB

Where:
VN = volume of the neck
VS = volume of the shoulder
VB = volume of the body

Bottle - Linear Shoulder:

Neck: VN = π * r^2 * a

Body: VB = π * q^2 * c

Shoulder:

Let's use the technique of the Method of Discs.

Top Boundary: y = b

Bottom Boundary: y = 0

Left Boundary: x = 0

Right Boundary: x = (r - q)/b * y + q

The line between the points (r, b) and (q, 0).

Slope:
Δy/Δx = (b - 0)/(r - q) = b/(r - q)

Y Intercept
y = b/(r - q) * x + β

Use point (q, 0) (x = q and y = 0)
0 = b/(r - q) * q + β
β = -b/(r - q) * q

Solving for x:
y = b/(r - q) * x - b/(r - q) * q
(r - q)/b * y = b * x - b * q
x = (r - q)/b * y + q

Volume of the Shoulder:
VS =

b
∫ ((r - q)/b * y + q)^2 dy * π =
0

b
∫ (r - q)/b * ((r - q)/b * y + q)^2 dy * (π * b)/(r - q) =
0

b
[ 1/3 * ((r - q)/b * y + q)^3 ] * (π * b)/(r - q) =
0

(π * b)/(3 * (r - q)) * (r^3 - q^3) =


(π * b)/(3 * (r - q)) * (r - q) * (r^2 + r * q + q^2) =

(π * b)/3 * (r^2 + r * q + q^2)

Total Volume - Bottle: Linear Shoulder:

V = VN + VS + VB =

π * r^2 * a + (π * b)/3 * (r^2 + r * q + q^2) + π * q^2 * c


Bottle: Parabolic Shoulder

Neck: VN = π * r^2 * a

Body: VB = π * q^2 * c

Shoulder:

Let's use the technique of the Method of Discs.

Top Boundary: y = b

Bottom Boundary: y = 0

Left Boundary: x = 0

Right Boundary:

Parabolic Equation with roots x = -q and x = q and the curve concave downward, an equation to describe this curve can be:

y = -x^2 + q^2
y + x^2 = q^2
x^2 = q^2 - y (note we have x^2)

Volume of the Shoulder:
VS =

b
∫ q^2 - y dy * π =
0

b
[ q^2 * y - y^3/3 ] * π =
0

π * (b * q^2 - b^3/3)

Total Volume - Parabolic Shoulder:

V = VB + VS + VN =

π * q^2 * c + π * (b * q^2 - b^3/3) + π * r^2 * a


Example:
a = 1 in, b = 1 in, c = 4 in, r = 0.9 in, q = 1.5 in
V = π * 1.5^2 * 4 + π * (1 * 1.5^2 - 1^3/3) + π * 0.9^2 * 1 ≈ 36.84041 in^3


These are two ways to approximate the volume of the bottles.

Eddie

This blog is property of Edward Shore. 2014


Dozenal RPN Calculator App for Android for Android Smartphones and Numworks Beta Firmware Version 25

  Dozenal Calculator App for Android Smartphones and Numworks Beta Firmware Version 25 Dozenal Calculator App for Android Smartphones T...