Sunday, July 16, 2017

Casio fx-CG50, TI-84 Plus CE, HP Prime: Square Root-Linear Regression

Casio fx-CG50, TI-84 Plus CE, HP Prime:  Square Root-Linear Regression



The program SQLINREG attempts to fit data to the curve:

Y = √(A + B*X)

We can use the linear transformation:

y^2 = a + b*x

This allows us to enter each data point as (x, y^2) and execute the linear regression function.  The HP Prime version uses the LSQ function.  Both the Casio fx-CG50 and TI-84 Plus CE versions give the correlation, r. 

Casio fx-CG50 Program: SQLINREG

“EWS 2017-07-16”
“SQUARE ROOT FIT”
“Y=√(A+BX)”
“X: “? → List 1
“Y: “? → List 2
List 2^2 → L2
LinearReg(a+bx) List 1, List 2
“A=”
a
“B=”
b
“CORR=”
R

How to access: 

*  LinearReg(a+bx):  EXIT the main program menu, F4 (MENU), F1 (STAT), F6 (CALC), F6 ( > ), F1 ( X ), F2 (a+bx)

*  a, b, r:  VARS, F3 (STAT), F3 (GRAPH), a/b/r

TI-84 Plus CE Program: SQLINREG

"EWS 2017-07-16"
Disp "SQUARE ROOT FIT"
Disp "√(A+BX)"
Input "X: ",L1
Input "Y: ",L2
L2^2→L2
LinReg(a+bx) L1,L2
Disp "A=",a
Disp "B=",b
Disp "r=",r

HP Prime Program:  SQLINREG

EXPORT SQLINREG(L1,L2)
BEGIN
// EWS 2017-07-16
// Square Root-Linear Regression
// Y=√(A+BX)

LOCAL S:=SIZE(L1);
LOCAL L0:=MAKELIST(1,X,1,S);
L2:=L2^2;

LOCAL M1,M2,M3;
M1:=list2mat(CONCAT(L0,L1),S);
M1:=TRN(M1);
M2:=list2mat(L2,S);
M2:=TRN(M2);
M3:=CAS.LSQ(M1,M2);

RETURN
{"Y=√(A+BX)",M3};

END;

Example

x
y
y^2
0.9
2.40
5.76
1.3
2.68
7.1824
1.8
3.03
9.1809
2.4
3.39
11.4921
3.6
4.05
16.4025
5.2
4.77
22.7529
6.1
5.14
26.4196

Results:
A = 2.03165434
B = 3.989146461
CORR = 0.999950438
Equation:  y = √(2.03165434 + 3.98914641*x)


Predicted Values:
y(2) = 3.163850053
y(4) = 4.241254529

Eddie


This blog is property of Edward Shore, 2017

TI 30Xa Algorithm: Acceleration, Velocity, Speed

TI 30Xa Algorithm: Acceleration, Velocity, Speed Introduction and Algorithm Given the acceleration (α), initial velocity (v0), and...