Casio Classpad (fx-CP400): Collection of Functions
For my birthday post, on Pi (π) Day (March 14), here is a collection of functions for the Casio Classpad (300, 330, fx-CP400, fx-CP500).
Birthday Probability Function: bday(c,n)
"The probability that a number in a room do not share a same birthday"
c: number of categories (i.e. days in a year)
n: population size
Example:
bday(365, 40): 0.1087681902
Percent Change: pchg(old, new)
old: old amount
new: new amount
Example:
pchg(400,500): 25
Combination with Repetition: nHr(n,r)
n: population
r: number of objects to pick
Example:
nHr(52,5): 3819816
Error Function and Error Compliment Function
Error Function: erf(x)
Error Compliment Function: erfc(x)
Note that erf(x) + erfc(x) = 1
Example:
erf(0.60): 0.6038560908
erfc(0.60): 0.3961439092
Law of Cosines
a^2 = b^2 + c^2 - 2*b*c*cos(α)
Finding the Angle α: cosang(a,b,c)
Finding the Side a: cosside(b,c,α)
Example:
(Degrees Mode)
a = 20.1, b = 18.5, c = 22.3: cosang(20.1,18.5,22.3): 58.13961834° (approx)
b = 24.2, c = 18.9, α = 58°: cosside(24.2,18.9,58): 21.4032954 (approx)
Fresnel Integrals
Fresnel Cosine Integral: frescos(u)
C(u) = ∫( cos(π * x^2 ÷ 2) dx, 0, u)
Fresnel Sine Integral: fressin(u)
S(u) = ∫( sin(π * x^2 ÷ 2) dx, 0, u)
Example:
frescos(1.5): 0.445261176
fressin(1.5): 0.6975049601
Bessel Integral of the First Kind: bessel(n,x)
J_n(x) = 1 / π * ∫( cos(n * t - x * sin t) dt, 0, π)
Example:
bessel(0,1.5): 0.5118276716
bessel(2,1.2): 0.1593490183
Elliptic Integral of the First Kind: ellip(x)
K(x) = ∫( 1/ √(1 - x^2 * sin^2 t) dt, 0, π/2)
Example:
ellip(-0.6): 1.750753803
ellip(0.4): 1.639999866
Sine Integral: Si(x)
Si(x) = ∫( sin t / t dt, 0, x)
Example:
Si(1.8): 1.50581678
Si(6): 1.424687551
Beta Function: beta(a,b)
β(a, b) = (Γ(a) * Γ(b)) ÷ Γ(a+b)
Example:
beta(2,3): 1/12
beta(1.9,4.6): 0.04470413922 (approx)
Relativity Factor: relat(v)
factor = √(1 - v^2/c^2)
c = 299792458 m/s
v = velocity
Example:
relat(201E6): 0.7419422153 (approx)
Schwarzschild Radius: schwarz(m)
r = (2 * G * m)/c^2
G = 6.674E-11 m^3/(kg s^2)
c = 299792458 m/s
m = mass the black hole, kg
r = Schwarzschild Radius, m (event horizon)
Example:
schwarz(7.89E30): 11717.95418
Distance of a Drop: dropdist(v0,t)
v0: initial velocity, m/s
t: time, s
Calculated: distance, m
Example:
dropdist(15,5): 197.583125
Cycle of a Simple Pendulum: pendu(l)
l: length of a string, m
Calulated: time of the pendulum swing, s
Example:
pendu(5.5): 4.705446883
Impedance in LRC Series Circuit: lrcser(R,f,L,C)
R: resistance, Ω
f: frequency, Hz
L: inductance, H
C: capacity, F
Example:
lrcser(4,80,0.1,50E-6): 11.21437564
Impedance in LRC Parallel Circuit: lrcpar(R,f,L,C)
R: resistance, Ω
f: frequency, Hz
L: inductance, H
C: capacity, F
Example:
lrcpar(4,80,0.1,50E-6): 3.999122191
Source for:
Distance of a Drop
Cycle of a Simple Pendulum
Impedance in LRC Series Circuit
Impedance in LRC Parallel Circuit
Scientific Calculator 128 fx-1000F/fx-5000F Owner's Manual. Casio. Tokyo, Japan.
Download the file here: https://drive.google.com/file/d/1M54HlJ9dP95VBEmGzkUozGzJxKGpiHMh/view?usp=share_link
Eddie
All original content copyright, © 2011-2023. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.