## Saturday, February 3, 2024

### Swiss Micros DM42 and TI-84 Plus: Sum of an Infinite Geometric Series

Swiss Micros DM42 and TI-84 Plus:  Sum of an Infinite Geometric Series

Introduction

An infinite geometric series has the form:

a + a × r + a × r^2 + a × r^3 + ...

= a × (1 + r + r^2 + r^3 + ....)

If |r| < 1, the series converges and a sum exists.

Σ  a × r^n   =   a ÷ (1 - r)

n=0

Σ  a × r^(n-1)   =   a ÷ (1 - r)

n=1

However if |r| ≥ 1, the series diverges and does not have as sum.

DM42 Program:  GSUM

Calculators: DM42, HP 42S, Free42, Plus42

00 { 36-Byte Prgm }

01 LBL "GSUM"

02 ENTER

03 ABS

04 1

05 X<>Y

06 X>Y?

07 GTO 00

08 R↓

09 R↓

10 1

11 X<>Y

12 -

13 ÷

14 RTN

15 LBL 00

16 CLX

17 "DIVERGES"

18 AVIEW

19 .END.

In the case the series diverges, the X stack is cleared (displays 0).

TI-84 Plus Program:  GSUM

Calculators:  TI-84 Plus, TI-84 Plus CE (Python), TI-83 Premium CE (Python)

Disp "Σ(A*R^N,0,INF)","Σ(A*R^(N-1),1,I)"

Prompt A,R

ClrHome

Disp "A=",A,"R=",R

If abs(R)<1

Then

A/(1-R)→S

Disp "SUM=",S

Else

Disp "DIVERGES"

End

Examples

A:  3,  R:  -0.2

Stack:  Y = 3, X = -0.2

Result = 2.5

A:  3,  R:  0.2

Stack:  Y = 3, X = -0.2

Result = 3.75

A:  3,  R:  -2.2

Stack:  Y = 3, X = -2.2

Result = diverges

A:  3,  R:  2.2

Stack:  Y = 3, X = 2.2

Result = diverges

Eddie

All original content copyright, © 2011-2024.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

### Casio fx-CG50 and Swiss Micros DM32: HP 16C’s Bit Summation

Casio fx-CG50 and Swiss Micros DM32: HP 16C’s Bit Summation The HP 16C’s #B Function The #B function is the HP 16C’s number of...