This is part two of the RPN Mode for HP Prime tutorial. This time I am taking about advanced functions, such as numeric integrals, numeric derivatives, summation, and solving equations.

Link to the video:

http://youtu.be/YAJwjpldiak

DETAILS:

Syntax - RPN Mode:

-----

MAX and MIN

Path: Toolbox, Math, 2, 1 for MAX (2 for MIN)

Syntax:

1: list or vector

MAX(1) or MIN(1)

- or -

Numbers on the stack

MAX(n) or MIN(n) (n is 9 or less)

-----

Factorizing Integers – CAS.ifactor

1. Enter the integer to be factorized, press the Enter key.

2. Press Toolbox, CAS, 5, 2, 1 to execute CAS.ifactor(1)

-----

Generating a Sequence - MAKELIST

Path: Toolbox, Math, 6, 1

Stack:

5: ‘function in single quotes’

4: ‘variable in single quotes’

3: beginning point

2: ending point

1: increment/decrement

MAKELIST(5)

-----

Finding the Roots of a Polynomial - CAS. proot

Path: Toolbox, CAS, 6, 1

Stack:

1: vector or list of coefficients (decreasing power of x)

CAS.proot(1)

-----

Summation – CAS.sum

Path: Toolbox, Math, 2, 5

Stack:

4: ‘function in single quotes’

3: ‘variable’

2: starting point

1: finishing point

CAS.sum(4)

-----

Numerical Integration

1. Press the Template Key, choose ∫ (2nd row, 4th column)

2. Fill in the template – use capital letters for the variable

3. Press the Enter Key

4. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)

-----

Numerical Derivative

1. Store value in the variable: Number, Enter Key, Variable in single Quotes, Shift Key, EEX Key

2. Press the Template Key, choose ∂ (1st row, 4th column). Fill in the template – use capital letters

for the variable, and press the Enter Key

3. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)

-----

Matrix Operations

Put the matrix on the stack. Use the Template Key, choose matrix (1st row, 6th column).

Determinant: Press Toolbox, Math, 7, 2. Determinant is calculated automatically.

Inverse: Press Shift, then the division key. (x^-1). This works for square matrices only.

Eigenvalues: Press Toolbox, Math, 7, 6, 1. CAS.EIGENVAL is called. Execute CAS.EIGENVAL(1).

-----

Finding Numerical Roots using FNROOT

Path: Toolbox, Math, 2, 4

Stack:

3: ‘function in single quotes’

2: ‘variable’

1: guess

Execute FNROOT(3)

Format: function = 0

-----

Eddie

This blog is property of Edward Shore. 2014

Link to the video:

http://youtu.be/YAJwjpldiak

DETAILS:

Syntax - RPN Mode:

-----

MAX and MIN

Path: Toolbox, Math, 2, 1 for MAX (2 for MIN)

Syntax:

1: list or vector

MAX(1) or MIN(1)

- or -

Numbers on the stack

MAX(n) or MIN(n) (n is 9 or less)

-----

Factorizing Integers – CAS.ifactor

1. Enter the integer to be factorized, press the Enter key.

2. Press Toolbox, CAS, 5, 2, 1 to execute CAS.ifactor(1)

-----

Generating a Sequence - MAKELIST

Path: Toolbox, Math, 6, 1

Stack:

5: ‘function in single quotes’

4: ‘variable in single quotes’

3: beginning point

2: ending point

1: increment/decrement

MAKELIST(5)

-----

Finding the Roots of a Polynomial - CAS. proot

Path: Toolbox, CAS, 6, 1

Stack:

1: vector or list of coefficients (decreasing power of x)

CAS.proot(1)

-----

Summation – CAS.sum

Path: Toolbox, Math, 2, 5

Stack:

4: ‘function in single quotes’

3: ‘variable’

2: starting point

1: finishing point

CAS.sum(4)

-----

Numerical Integration

1. Press the Template Key, choose ∫ (2nd row, 4th column)

2. Fill in the template – use capital letters for the variable

3. Press the Enter Key

4. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)

-----

Numerical Derivative

1. Store value in the variable: Number, Enter Key, Variable in single Quotes, Shift Key, EEX Key

2. Press the Template Key, choose ∂ (1st row, 4th column). Fill in the template – use capital letters

for the variable, and press the Enter Key

3. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)

-----

Matrix Operations

Put the matrix on the stack. Use the Template Key, choose matrix (1st row, 6th column).

Determinant: Press Toolbox, Math, 7, 2. Determinant is calculated automatically.

Inverse: Press Shift, then the division key. (x^-1). This works for square matrices only.

Eigenvalues: Press Toolbox, Math, 7, 6, 1. CAS.EIGENVAL is called. Execute CAS.EIGENVAL(1).

-----

Finding Numerical Roots using FNROOT

Path: Toolbox, Math, 2, 4

Stack:

3: ‘function in single quotes’

2: ‘variable’

1: guess

Execute FNROOT(3)

Format: function = 0

-----

Eddie

This blog is property of Edward Shore. 2014

## No comments:

## Post a Comment