This is part two of the RPN Mode for HP Prime tutorial. This time I am taking about advanced functions, such as numeric integrals, numeric derivatives, summation, and solving equations.
Link to the video:
http://youtu.be/YAJwjpldiak
DETAILS:
Syntax - RPN Mode:
-----
MAX and MIN
Path: Toolbox, Math, 2, 1 for MAX (2 for MIN)
Syntax:
1: list or vector
MAX(1) or MIN(1)
- or -
Numbers on the stack
MAX(n) or MIN(n) (n is 9 or less)
-----
Factorizing Integers – CAS.ifactor
1. Enter the integer to be factorized, press the Enter key.
2. Press Toolbox, CAS, 5, 2, 1 to execute CAS.ifactor(1)
-----
Generating a Sequence - MAKELIST
Path: Toolbox, Math, 6, 1
Stack:
5: ‘function in single quotes’
4: ‘variable in single quotes’
3: beginning point
2: ending point
1: increment/decrement
MAKELIST(5)
-----
Finding the Roots of a Polynomial - CAS. proot
Path: Toolbox, CAS, 6, 1
Stack:
1: vector or list of coefficients (decreasing power of x)
CAS.proot(1)
-----
Summation – CAS.sum
Path: Toolbox, Math, 2, 5
Stack:
4: ‘function in single quotes’
3: ‘variable’
2: starting point
1: finishing point
CAS.sum(4)
-----
Numerical Integration
1. Press the Template Key, choose ∫ (2nd row, 4th column)
2. Fill in the template – use capital letters for the variable
3. Press the Enter Key
4. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)
-----
Numerical Derivative
1. Store value in the variable: Number, Enter Key, Variable in single Quotes, Shift Key, EEX Key
2. Press the Template Key, choose ∂ (1st row, 4th column). Fill in the template – use capital letters
for the variable, and press the Enter Key
3. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)
-----
Matrix Operations
Put the matrix on the stack. Use the Template Key, choose matrix (1st row, 6th column).
Determinant: Press Toolbox, Math, 7, 2. Determinant is calculated automatically.
Inverse: Press Shift, then the division key. (x^-1). This works for square matrices only.
Eigenvalues: Press Toolbox, Math, 7, 6, 1. CAS.EIGENVAL is called. Execute CAS.EIGENVAL(1).
-----
Finding Numerical Roots using FNROOT
Path: Toolbox, Math, 2, 4
Stack:
3: ‘function in single quotes’
2: ‘variable’
1: guess
Execute FNROOT(3)
Format: function = 0
-----
Eddie
This blog is property of Edward Shore. 2014
Link to the video:
http://youtu.be/YAJwjpldiak
DETAILS:
Syntax - RPN Mode:
-----
MAX and MIN
Path: Toolbox, Math, 2, 1 for MAX (2 for MIN)
Syntax:
1: list or vector
MAX(1) or MIN(1)
- or -
Numbers on the stack
MAX(n) or MIN(n) (n is 9 or less)
-----
Factorizing Integers – CAS.ifactor
1. Enter the integer to be factorized, press the Enter key.
2. Press Toolbox, CAS, 5, 2, 1 to execute CAS.ifactor(1)
-----
Generating a Sequence - MAKELIST
Path: Toolbox, Math, 6, 1
Stack:
5: ‘function in single quotes’
4: ‘variable in single quotes’
3: beginning point
2: ending point
1: increment/decrement
MAKELIST(5)
-----
Finding the Roots of a Polynomial - CAS. proot
Path: Toolbox, CAS, 6, 1
Stack:
1: vector or list of coefficients (decreasing power of x)
CAS.proot(1)
-----
Summation – CAS.sum
Path: Toolbox, Math, 2, 5
Stack:
4: ‘function in single quotes’
3: ‘variable’
2: starting point
1: finishing point
CAS.sum(4)
-----
Numerical Integration
1. Press the Template Key, choose ∫ (2nd row, 4th column)
2. Fill in the template – use capital letters for the variable
3. Press the Enter Key
4. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)
-----
Numerical Derivative
1. Store value in the variable: Number, Enter Key, Variable in single Quotes, Shift Key, EEX Key
2. Press the Template Key, choose ∂ (1st row, 4th column). Fill in the template – use capital letters
for the variable, and press the Enter Key
3. Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)
-----
Matrix Operations
Put the matrix on the stack. Use the Template Key, choose matrix (1st row, 6th column).
Determinant: Press Toolbox, Math, 7, 2. Determinant is calculated automatically.
Inverse: Press Shift, then the division key. (x^-1). This works for square matrices only.
Eigenvalues: Press Toolbox, Math, 7, 6, 1. CAS.EIGENVAL is called. Execute CAS.EIGENVAL(1).
-----
Finding Numerical Roots using FNROOT
Path: Toolbox, Math, 2, 4
Stack:
3: ‘function in single quotes’
2: ‘variable’
1: guess
Execute FNROOT(3)
Format: function = 0
-----
Eddie
This blog is property of Edward Shore. 2014