I used the classic HP 12C, with the 99 step capacity. Even without the trig functions, we can do a lot.
Eddie
Calculating f(x) = p * ∑(a^k, k=1 to n) using the TVM Keys
Input:
[ n ] = nR0 = a
R1 = p
Program:
STEP
|
KEY
|
CODE
|
01
|
BEGIN
|
43 7
|
02
|
RCL 0
|
45 0
|
03
|
1
|
1
|
04
|
-
|
30
|
05
|
EEX
|
26
|
06
|
2
|
2
|
07
|
*
|
20
|
08
|
[i]
|
12
|
09
|
RCL 1
|
45 1
|
10
|
CHS
|
16
|
11
|
[PMT]
|
14
|
12
|
[FV]
|
15
|
13
|
END
|
43 8
|
14
|
GTO 00
|
43 33 00
|
Examples:
n = 60, R0 = 1.01, R1 = 350.
Result: 28,870.2283
n = 5, R0 = 2, R1 = 10.05.
Result: 623.1
Heron’s Formula
Area of a Triangle with side lengths a, b, and c.
Area = √(s*(s-a)*(s-b)*(s-c)) where s = (a+b+c)/2
Input:
R1 = aR2 = b
R3 = c
Program:
STEP
|
KEY
|
CODE
|
01
|
RCL 1
|
45 1
|
02
|
RCL 2
|
45 2
|
03
|
+
|
40
|
04
|
RCL 3
|
45 3
|
05
|
+
|
40
|
06
|
2
|
2
|
07
|
÷
|
10
|
08
|
STO 4
|
44 4
|
09
|
RCL 4
|
45 4
|
10
|
RCL 1
|
45 1
|
11
|
-
|
30
|
12
|
RCL 4
|
45 4
|
13
|
RCL 2
|
45 2
|
14
|
-
|
30
|
15
|
*
|
20
|
16
|
RCL 4
|
45 4
|
17
|
RCL 3
|
45 3
|
18
|
-
|
30
|
19
|
*
|
20
|
20
|
RCL 4
|
45 4
|
21
|
*
|
20
|
22
|
√
|
43 21
|
23
|
GTO 00
|
43
|
Example: a = 5, b =
5, c = 6. Result: 12
Projectile Motion without Air Resistance: With the projectile being launched at 45° at
velocity V. The maximum distance will be
achieved at these conditions.
Theoretical Maximum Distance:
R_max = v^2/g (in feet)
Theoretical Height of the Projectile (at x = R_max/2)
H = v^2/(4g) (in
feet)
Where g = 32.17404 ft/s^2
If you desire meters, substitute g = 9.80665 m/s^2 instead.
Run the program with V in the display. The velocity is assumed to be
feet/second. The maximum distance is
calculated, then the projectile’s theoretical height.
Program:
STEP
|
KEY
|
CODE
|
01
|
2
|
2
|
02
|
Y^X
|
21
|
03
|
3
|
3
|
04
|
2
|
2
|
05
|
.
|
48
|
06
|
1
|
1
|
07
|
7
|
7
|
08
|
4
|
4
|
09
|
0
|
0
|
10
|
4
|
4
|
11
|
÷
|
40
|
12
|
R/S
|
31 (display R)
|
13
|
4
|
4
|
14
|
÷
|
40
|
15
|
GTO 00
|
43 33 00 (display H)
|
Factorials of Large Integers
N! = N * (N-1) *
(N-2) * … * 1
**For large n, this program will take time if you have an HP
12C that was manufactured in the 1980s.
Input n, press R/S.
The mantissa is displayed.
Press R/SThe exponent is displayed (10^exponent).
STEP
|
KEY
|
CODE
|
01
|
STO 0
|
44 0
|
02
|
0
|
0
|
03
|
STO 1
|
44 1
|
04
|
RCL 0
|
45 0
|
05
|
LN
|
43 23 // loop
begins
|
06
|
STO+ 1
|
44 40 1
|
07
|
1
|
1
|
08
|
STO- 0
|
44 30 0
|
09
|
RCL 0
|
45 0
|
10
|
1
|
1
|
11
|
-
|
30
|
12
|
X=0
|
43 35
|
13
|
GTO 15
|
43 33 15 // end of
loop
|
14
|
GTO 04
|
43 33 04
|
15
|
RCL 1
|
45 1
|
16
|
1
|
1
|
17
|
0
|
0
|
18
|
LN
|
43 23
|
19
|
÷
|
10
|
20
|
STO 1
|
44 1
|
21
|
ENTER
|
36
|
22
|
FRAC
|
43 24
|
23
|
1
|
1
|
24
|
0
|
0
|
25
|
X<>Y
|
34
|
26
|
Y^X
|
21
|
27
|
R/S
|
31 // mantissa
|
28
|
X<>Y
|
34
|
29
|
INTG
|
43 25 // exponent
|
30
|
GTO 00
|
43 33 00
|
Example:
50! »
3.0414 * 10^64
50 R/SResult: 3.0414 R/S 64
76! »
1.8855 * 10^111
76 R/SResult: 1.8855 R/S 111
Degrees Minutes Seconds to Decimal Degrees
2°51’32.4” -> 2.859
Type input as DD.MMSSSS (degrees, minutes, seconds). For our
example, the input would be 2.51324.
STEP
|
KEY
|
CODE
|
01
|
STO 0
|
44 0
|
02
|
INTG
|
43 25
|
03
|
STO 1
|
44 1
|
04
|
RCL 0
|
45 0
|
05
|
FRAC
|
43 24
|
06
|
EEX
|
26
|
07
|
2
|
2
|
08
|
*
|
20
|
09
|
INTG
|
43 25
|
10
|
6
|
6
|
11
|
0
|
0
|
12
|
÷
|
10
|
13
|
STO+ 1
|
44 40 1
|
14
|
RCL 0
|
45 0
|
15
|
EEX
|
26
|
16
|
2
|
2
|
17
|
*
|
20
|
18
|
FRAC
|
43 24
|
19
|
3
|
3
|
20
|
6
|
6
|
21
|
÷
|
10
|
22
|
STO+ 1
|
44 40 1
|
23
|
RCL 1
|
45 1
|
24
|
GTO 00
|
43 33 00
|
Decimal Degrees to Degrees Minutes Seconds
Answer displayed as DD.MMSSSS (degrees minutes seconds)
Program:
01
|
STO 0
|
44 0
|
02
|
INTG
|
43 25
|
03
|
STO 1
|
44 1
|
04
|
RCL 0
|
45 0
|
05
|
FRAC
|
43 24
|
06
|
6
|
6
|
07
|
0
|
0
|
08
|
*
|
20
|
09
|
ENTER
|
36
|
10
|
INTG
|
43 25
|
11
|
EEX
|
26
|
12
|
2
|
2
|
13
|
÷
|
10
|
14
|
STO+ 1
|
44 40 1
|
15
|
R-Down
|
33
|
16
|
FRAC
|
43 24
|
17
|
6
|
6
|
18
|
0
|
0
|
19
|
*
|
20
|
20
|
EEX
|
26
|
21
|
4
|
4
|
22
|
÷
|
10
|
23
|
STO+ 1
|
44 40 1
|
24
|
RCL 1
|
45 1
|
25
|
GTO 00
|
43 33 00
|