Deriving trig functions where the angle is an inverse trig function. Example: sin(acos x).
Inverse Functions
sin(asin t) = t
cos(acos t) = t
tan(atan t) = t
Other such calculations can be derived from the three Pythagorean trig identities:
sin^2 x + cos^2 x = 1
sec^2 = 1 + tan^2 x
1 + cot^2 x = csc^2 x
sin^2 x + cos^2 x = 1
Also known as (sin x)^2 + (cos x)^2 = 1
Let x = asin t where -1 ≤ t ≤ 1
(sin(asin t))^2 + (cos(asin t))^2 = 1
t^2 + (cos(asin t))^2 = 1
(cos(asin t))^2 = 1 - t^2
cos(asin t) = √(1 - t^2)
Let x = acos t, -1 ≤ t ≤ 1
(sin(acos t))^2 + (cos(acos t))^2 = 1
(sin(acos t))^2 = 1 - (cos(acos t))^2
(sin(acos t))^2 = 1 - t^2
sin(acos t) = √(1 - t^2)
sec^2 x = 1 + tan^2 x
sec^2 x = 1 + tan^2 x
1/cos^2 x = 1 + tan^2 x
Let x = atan t, -1 ≤ t ≤ 1
1/(cos(atan t))^2 = 1 + (tan(atan t))^2
1/((cos(atan t))^2 = 1 + t^2
(cos(atan t))^2 = 1/(1 + t^2)
cos(atan t) = √(1/(1 + t^2))
Let x = acos t, -1 ≤ t ≤ 1
1/(cos(acos t))^2 = 1 + (tan(acos t))^2
1/t^2 = 1 + (tan(acos t))^2
(tan(acos t))^2 = 1/t^2 - 1
(tan(acos t))^2 = (1 - t^2)/t^2
(tan(acos t)) = √(1 - t^2)/t
1 + cot^2 x = csc^2 x
1 + cot^2 x = csc^2 x
1 + 1/tan^2 x = 1/sin^2 x
Let x = asin t, -1 ≤ t ≤ 1
1 + 1/(tan(asin t))^2 = 1/(sin(asin t))^2
1/(tan(asin t))^2 = 1/t^2 - 1
1/(tan(asin t))^2 = (1 - t^2)/t^2
(tan(asin t))^2 = t^2/(1 - t^2)
tan(asin t) = t/√(1 - t^2)
Let x = atan t, -1 ≤ t ≤ 1
1 + 1/(tan(atan t))^2 = 1/(sin(atan t))^2
1 + 1/t^2 = 1/(sin(atan t))^2
(t^2 + 1)/t^2 = 1/(sin(atan t))^2
(sin(atan t))^2 = t^2/(t^2 + 1)
sin(atan t) = t/√(t^2 +1)
Summary:
cos(asin t) = √(1 - t^2)
sin(acos t) = √(1 - t^2)
cos(atan t) = √(1/(1 + t^2))
tan(acos t) = √(1 - t^2)/t
tan(asin t) = t/√(1 - t^2)
sin(atan t) = t/√(t^2 +1)
This blog is property of Edward Shore. 2014
A blog is that is all about mathematics and calculators, two of my passions in life.
Friday, October 17, 2014
sin(atan x), sin(acos x), cos(asin x), cos(atan x), tan(asin x), tan(acos x)
RPN: Certain Integrals to Positive Infinity
RPN: Certain Integrals to Positive Infinity Introduction Today’s RPN session deals with improper integrals where the upper limit is...