HP 50g:
Bolt Pattern, Solar Irradiance,
Thermal Noise, Regular Polygons,
Center of Mass (Matrix of Masses)
Bolt Pattern: BOLTPAT
Link to the original blog entry: http://edspi31415.blogspot.com/2015/03/hp-prime-ti-84-bolt-pattern.html
Input:
4:
xc: x coordinate, center
3:
yc: y coordinate, center
2:
n: number of bolts
1:
d: diameter of the circle
Program:
<< DEG OVER 1 – → xc yc n d k
<< { } 0 k FOR I 360 I * n / DUP COS
d 2 / * xc +
SWAP SIN d 2 / * yc + (0,1) * + + NEXT
DUPDUP 2 GET SWAP 1 GET – ABS >>
>>
Output:
2:
list of bolts (x+yi)
1:
OC-Distance
Solar Irradiance: IRRAD
Link to the original blog entry: http://edspi31415.blogspot.com/2015/03/hp-prime-and-casio-prizm-solar.html
Input:
5:
es: elevation of the sun (as
decimal degrees)
4:
as: azimuth of the sun from
south going east (as decimal degrees)
3:
ep: elevation of the panel (as
decimal degrees)
2:
ap: azimuth of the panel from
south going east (as decimal degrees)
1:
ib: the sun’s power or irradiance
(usually 1,000 or 1,367 W/m^2)
Program:
<< → es as ep ap ib
<< DEG ep COS es SIN * ep SIN es COS
* as ap – COS *
+ ACOS DUP COS ib * >> >>
Output:
2:
incidence angle
1:
surface radiance
Thermal Noise: THNOISE
Link to the original blog entry: http://edspi31415.blogspot.com/2015/02/hp-prime-ti-84-thermal-noise-johnson.html
Input:
3:
R: resistance (Ω)
2:
T: temperature (K)
1:
B: noise bandwidth (Hz)
Program:
<< → R T B
<< T R * B * 4 * 1.3806488E-23 * √
T B * LOG 10 * 198.599167802 - >> >>
Output:
2:
Voltage (Volts)
1:
Noise Power (dB)
Regular Polygon: Internal Angle and Area: RPOLYG
Link to the original blog entry: http://edspi31415.blogspot.com/2015/03/regular-polygons-internal-angles-and.html
Input:
2:
s: side length
1:
n: number of sides
Program:
<< DEG DUP INV 360 * NEG 180 + UNROT
4 / SWAP SQ * SWAP DUP UNROT 2 / TAN * >>
Output:
2:
Interior Angle
1:
Area
Center of Mass using Matrix: CENTERMTX
Link to the original blog entry: http://edspi31415.blogspot.com/2015/04/hp-prime-center-of-mass-matrix.html
Input:
1:
Matrix of Masses
Program:
<< DUP SIZE OBJ→ DROP → M R C
<< M 1 C START 1 NEXT C →ARRY * AXL ∑LIST
M 1 C FOR I I NEXT C 1 2 →LIST →ARRY * TRAN
1 R START 1 NEXT R 1 2 →LIST →ARRY * OBJ→
DROP
M TRAN 1 R FOR I I NEXT R 1 2 →LIST →ARRY *
TRAN
1 C START 1 NEXT C 1 2 →LIST →ARRY * OBJ→ DROP
→ tm rw cw
<< rw tm / cw tm / {1,2} →ARRY >> >> >>
Output:
[[ x center of mass point, y center of mass point ]]
Special Note: April 11 will mark the fourth anniversary of
this blog. I appreciate the readers and
followers of this blog and thank you for that, and the comments. Best always,
Eddie!
This blog is property of Edward Shore. 2015.