Saturday, April 4, 2015

HP Prime: Center of Mass - Matrix Representation

HP Prime:  Center of Mass - Matrix Representation

The HP Prime program CENTERMTX calculates the center of mass of the matrix M, where M represents the body.  The entries of M represents an array of molecules, each with assigned weights.  It is possible that the center of mass is located outside of the body. 


Note:  If gravity affects the particles equally, then the center of mass & center of gravity are identical.  

Formulas:

Xc = ∑(x * m)/∑m
Yc = ∑(y * m)/∑m


HP Prime:  CENTERMTX

EXPORT CENTERMTX(m)
BEGIN
// Center of Mass: matrix
// Matrix of mass
LOCAL s,tm,rt,ct,r,c;
// in MAKEMAT I=row,J=col
s:=SIZE(m);
r:=s(1);
c:=s(2);
// Total Mass
tm:=TRN(m*MAKEMAT(1,c,1))*
MAKEMAT(1,r,1);
tm:=tm(1,1);
// Row Total
rt:=TRN(m*MAKEMAT(I,c,1))*
MAKEMAT(1,r,1);
rt:=rt(1,1);
// Column Total
ct:=TRN(TRN(m)*MAKEMAT(I,r,1))*
MAKEMAT(1,c,1);
ct:=ct(1,1);
// center
RETURN [[rt/tm,ct/tm]];
END;

Example:  Locate the center of mass of the following body.




The center of mass:  [[ 2.08333333333, 2 ]]


Eddie


This blog is property of Edward Shore.  2015.



RPN with HP 15C & DM32: Solving Simple Systems

RPN with HP  15C & DM32: Solving Simple Systems Welcome to another edition of RPN with HP 15C & DM32. Many Approaches to a...