Sunday, June 5, 2016

HP Prime and TI-84 Plus CE: Trapezoidal Rule

HP Prime and TI-84 Plus CE:  Trapezoidal Rule



Caption:  The Trapeziodal Rule applied on ∫ X^2*e^X dx from X = 1 to 4
Actual value:  543.2632185

The program TRAPRULE approximates the integral of f(X)

∫ f(X) dX = h/2 * ( f(a) + 2*Σf(x_I) + f(b) )

Where:
a = the lower limit
b = the upper limit
n = the number of intervals
h = (b – a)/n
x_I = a + h*I where I is from 1 to n-1



HP Prime:  TRAPRULE
EXPORT TRAPRULE()
BEGIN
// EWS 2016-06-05
HAngle:=0; // Radians
LOCAL f;

INPUT({{f,[8]},A,B,N},
"Trapezoidal Rule",
{"f(X)=","Low:","High:",
"Intervals:"});
H:=(B-A)/N;
X:=A; T:=EVAL(f);
X:=B; T:=EVAL(f)+T;
FOR I FROM 1 TO N-1 DO
X:=A+I*H; T:=2*EVAL(f)+T;
END;
T:=T*H/2;
RETURN T;
END;


TI-84 Plus CE Program: TRAPRULE
Radian:Func
Input "LOW:",A
Input "HIGH:",B
Input "INTERVAL:",N
(B-A)/N→H
A→X:Y₁→T
B→X:Y₁+T→T
For(I,1,N-1)
A+I*H→X
2*Y₁+T→T
End
T*H/2→T
Disp "INTEGRAL=",T

Examples:

Example 1:

∫ cos^2 X dX from X = 0 to X = π, n = 14
Approximation:  1.570796327

Example 2:

∫ X^2 + 3*X – 6 dX from X = 1 to X = 3, n = 14
Approximation:  8.673469388

Eddie

Source:

Burden, Richard L. and Faires, J. Douglas.  “Numerical Analysis” 8th Ed.  Thompson Brooks/Cole:  Belmont, CA. 2005

This blog is property of Edward Shore, 2016.




HP 32S II Statistical Formulas

HP 32S II Statistical Formulas Statistics Formulas The 32S II can store formulas for evaluations, including formulas involving stat variable...