Friday, June 3, 2016

The functions e^x, e^-x, e^(-x^2), erf(x) and Taylor Series

The functions e^x, e^-x, e^(-x^2), erf(x) and Taylor Series

Accurate digits are highlighted in green.  Calculations are used with a TI 84 Plus CE.

e^x = 1 + x + x^2/2! + x^3/3! + x^4/4 + … = Σ(x^n/n!, from n = 0 to ∞)

x =
e^x
10 terms
25 terms
50 terms
1
2.718281828
2.718281801
2.718281828
2.718281828
3
20.08553692
20.07966518
20.08553692
20.08553692
5
148.4131591
146.380601
148.4131591
148.4131591
9.9
19930.37044
11869.50538
19930.07221
19930.37044


e^(-x) = 1 – x + x^2/2! – x^3/3! + x^4/4 - … = Σ( (-x)^n/n!, from n = 0 to ∞)

x =
e^(-x)
10 terms
25 terms
50 terms
1
0.3678794412
0.3678794643
0.3678794412
0.3678794412
3
0.0497870684
0.0533258929
0.0497870684
0.0497870684
5
0.006737947
0.8640390763
0.0067379439
0.006737947
9.9
5.017468206E-5
1207.799663
-0.1392914019
5.017463241E-5

I think you know where I’m going.

e^(-x^2) = 1 – x^2 + x^4/2! – x^6/3! + x^8/4! = Σ( (-x)^(2*n)/n!, from n = 0 to ∞)

x =
e^(-x^2)
10 terms
25 terms
50 terms
1
0.3678794412
0.3678794643
0.3678794412
0.3678794412
3
1.234098041E-4
442.2750223
-0.0118646275
1.234194001E-4
5
1.38879439E-11
18613495.8
-2834107793
85689.40174
9.9
2.72143414E-43
2.04347238E13
-3.10254183E24
7.951057508E34

(Something really goes bonkers as x increases and n increases)

Error Function
erf(x) = 2/√π * ∫(e^(-t^2) dt, 0, x)
= 2/√π * (x – x^3/3 + x^5/(5*2!) – x^7/(7*3!) + x^9/(9*4!) - ...)
= 2/√π * Σ( (-x^(2n+1)/((2n+1)*n!) from n = 0 to ∞ )

x =
erf(x)
10 terms
25 terms
50 terms
1
0.8427007929
0.8427007941
0.8427007929
0.8427007929
3
0.9999779095
68.58627744
0.9992050426
0.9999779095
5
1
4853382.901
-3070260210.4
4724.331354
9.9
1
1.076461715E13
-6.7395908E23
*overflows during calculation*
(Result: 8.73442E33 from WolframAlpha)
(erf(x) is practically 1 for x > 3)

Note: 9.9^(2*50+1) ≈ 3.623E100


Thoughts:

*  Taylor series are great when x is near its center point.  In the all the cases above, the center point is x = 0. 

*  The more simple the expression, the better range of accuracy with less terms. 

*  Before you recommend a Taylor Series to approximate f(x), check the accuracy and the range.  A cautionary tale. 

Eddie


This blog is property of Edward Shore, 2016.

HP 32S II Statistical Formulas

HP 32S II Statistical Formulas Statistics Formulas The 32S II can store formulas for evaluations, including formulas involving stat variable...