Wednesday, July 6, 2016

TI-55 III Programs Part II: Impedance of a Series RLC Circuit, Quadratic Equation, Error Function

TI-55 III Programs Part II: Impedance of a Series RLC Circuit, Quadratic Equation, Error Function

On to Part II!



TI-55 III:  Impedance of Series RLC Circuit

The impedance of a series RLC circuit in Ω (ohms) is:

Z = √(R^2 + (2*π*f*L – 1/(2*π*f*C))^2)

Where:
R = resistance of the resistor in ohms (Ω)
L = inductance of the inductor in Henrys (H)
C = capacitance of the capacitor in Farads (F)
f = resonance frequency in Hertz (Hz)
XL = 2*π*f*L
XC = 1/(2*π*f*C)

Program:
Partitions allowed: 1-4
STEP
CODE
KEY
COMMENT
00
65
*
Start with f
01
02
2

02
65
*

03
91
π

04
95
=

05
61
STO

06
00
0
Store 2πf in R0
07
65
*

08
12
R/S
Prompt for L
09
75
-

10
53
(

11
71
RCL

12
00
0

13
65
*

14
12
R/S
Prompt for C
15
54
)

16
17
1/x

18
18
X^2

19
85
+

20
12
R/S
Prompt for R
21
18
X^2

22
95
=

23
13

24
41
INV

25
47
Eng
Cancel Eng Notation
26
12
R/S
Display Z

Input:  f [RST] [R/S], L [R/S], C [R/S], R [R/S]
Result:  Z

Test:
f = 60 Hz
L = 0.25 H
C = 16 * 10^-6 F
R = 150 Ω

Result:  166.18600 Ω

TI-55 III: Quadratic Equation

This program find the real roots of the equation:
X^2 + B*X + C = 0

Where:
D = B^2 – 4*C
If D ≥ 0, then continue the program since it will find the real roots.  Otherwise, stop since the roots are complex and is beyond the scope of this program.  The two roots are:
X1 = (-B + √D)/2
X2 = (-B - √D)/2

Program:
Partitions Allowed: 3
STEP
CODE
KEY
COMMENT
00
71
RCL
Calculate Discriminant
01
00
0

02
18
X^2

03
75
-

04
04
4

05
65
*

06
71
RCL

07
01
1

08
95
=

09
12
R/S
Display Discriminant
10
13

11
61
STO

12
02
2

13
75
-

14
71
RCL

15
00
0

16
95
=

17
55
÷

18
02
2

19
95
=

20
12
R/S
Display X1
21
53
(

22
71
RCL

23
00
0

24
85
+

25
71
RCL

26
02
2

27
54
)

28
94
+/-

29
55
÷

30
02
2

31
95
=

32
12
R/S
Display X2

Input:  B [STO] 0, C [STO] 1, [RST] [R/S]
Results:  Discriminant [R/S], root 1 [R/S], root 2

Test:  Solve X^2 + 0.05*X – 1 = 0
Input:  0.05 [STO] 0, 1 [+/-] [STO] 1 [RST] [R/S]
Results:  Discriminant = 4.0025  (It is non-negative, continue) [R/S]
X1 ≈ 0.9753125  [R/S]
X2 ≈ -1.0253125

TI-55 III: Gaussian Error Function

The error function is defined as:
erf(x) = ∫( 2*e^(-t^2)/√π dt, from t = 0 to t = x)

This program illustrates the integration function [ ∫ dx ] on the TI-55 III.

Program:
Prepare by pressing [2nd] [LRN] (Part) 3.  Integration needs a minimum of 3 memory registers.  That means, f(x) can take a maximum of 40 steps.
STEP
CODE
KEY
COMMENT
00
18
X^2
Integrand
01
94
+/-

02
41
INV

03
44
ln x
[INV] [ln x]: e^x (EXP)
04
65
*

05
02
2

06
55
÷

07
91
π

08
13

09
95
=

10
12
R/S

11
22
RST
End f(x) with =,R/S,RST

Input:  0 [STO] 1 (lower limit), x [STO] 2 (upper limit), [ ∫ dx ] n (number of partitions) [R/S]
Result: erf(x)
Test 1: erf(1.2) ≈ 0.910314. I use 12 partitions.
Input:  0 [STO] 1, 1.2 [STO] 2, [ ∫ dx ] 12 [ R/S ]
Result:  0.910314

Test 2:  erf(0.9) ≈ 0.7969082.   Store 0 in R0, 0.9 in R1.  12 partitions are used.

 Eddie

This blog is property of Edward Shore, 2016.



HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...