Saturday, October 31, 2020

Breaking Down the Factorial

Breaking Down the Factorial


Factorial: It's Not Just For Integers


Let n be a positive number, where n > 0.   n! can be rewritten as:


n! 

= n * (n - 1)!

= n * (n - 1) * (n - 2)!

= n * (n - 1) * (n - 2) * (n - 3)!

...

= n * (n - 1) * (n - 2) * (n - 3) * ... * k


where 0 ≤ k ≤ 1.   Note that 0! = 1.   Keep the loop multiplying n, n - 1, n - 2, n - 3, etc. until you a multiplying a number between 0! and 1! to the total.


For certain k:


0.25! ≈ 0.9064024771

0.50! = ≈ 0.8862269255

0.75! ≈ 0.9190625268

1! = 1


Examples


3! = 3 * 2 * 1! = 3 * 2 * 1 = 6

3.25! = 3.25 * 2.25 * 1.25 * 0.25! = 9.140625 * 0.25! ≈ 8.285085142

3.5! = 3.5 * 2.5 * 1.5 * 0.5! = 13.125 * √π ÷ 2 ≈ 11.6317284

3.75! = 3.75 * 2.75 * 1.75 * 0.75! = 18.046875 * 0.75! ≈ 16.58620654


4! = 4 * 3 * 2 * 1! = 4 * 3 * 2 * 1 = 24

4.25! = 4.25 * 3.25 * 2.25 * 1.25 * 0.25! = 38.847652625 * 0.25! ≈ 35.21161185

4.5! = 4.5 * 3.5 * 2.5 * 1.5 * 0.5! = 59.0625 * √π ÷ 2 ≈ 52.3427778

4.75! = 4.75 * 3.75 * 2.75 * 1.75 * 0.75! = 85.72265625 * 0.75! ≈ 78.78448106


Factorial Values of 0 to 1


Below is a chart are the values for 0 to 1, along with several approximation polynomials.  The value and polynomials have been determined using LibreOffice's Calc application.  








Happy Halloween, 

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Spotlight: Akron Brass FireCalc Pocket Computer

Spotlight: Akron Brass FireCalc Pocket Computer Welcome to a special Monday Edition of Eddie’s Math and Calculator blog. Thi...