Friday, December 31, 2021

12 Days of Christmas Integrals: ∫ x ∙ (ln(x))^2 dx

12 Days of Christmas Integrals:  ∫ x ∙ (ln(x))^2 dx


NEW YEARS EVE!!!!


On the Seventh day of Christmas Integrals, the integral featured today is...


∫ x ∙ (ln(x))^2 dx


Sounds like a job for integration by parts!


∫ x ∙ (ln(x))^2 dx


u = (ln(x))^2 

du = 2 ∙ ln(x) ∙ 1/x dx

dv = x dx

v = x^2/2


= x^2/2 ∙ (ln(x))^2 - ∫ 2 ∙ ln(x) ∙ 1/x  ∙ x^2/2 dx


= x^2/2 ∙ (ln(x))^2 - ∫ x ∙ ln(x) dx


u  = ln(x)

du = 1/x dx

dv = x dx

v = x^2/2


= x^2/2 ∙ (ln(x))^2 - x^2/2 ∙ ln(x) + ∫ x/2 dx


= x^2/2 ∙ (ln(x))^2 - x^2/2 ∙ ln(x) + x^2/4 + C


Eddie 


All original content copyright, © 2011-2021.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


No comments:

Post a Comment

Numworks Update 17.2 - Highlights

 Numworks Update 17.2 - Highlights Update is available at: https://www.numworks.com/ The Numworks website will detect your calculator and wi...