Sunday, January 2, 2022

12 Days of Christmas Integrals: ∫ 1 ÷ (√(x + a) - √(x)) dx, a is a constant

 12 Days of Christmas Integrals:  ∫ 1 ÷ (√(x + a) - √(x)) dx, a is a constant


On the Ninth day of Christmas Integrals, the integral featured today is...


∫ 1 ÷ (√(x + a) - √(x)) dx, a is a constant  



Multiply by (√(x+a) + √(x)) ÷ (√(x+a) + √(x)):


= ∫ 1 ÷ (√(x + a) - √(x)) ∙ (√(x+a) + √(x)) ÷ (√(x+a) + √(x)) dx


= ∫ (√(x+a) + √(x)) ÷ (x + a - x) dx


= ∫ (√(x+a) + √(x)) ÷ (a) dx


= ∫ √(x + a) ÷ a + √(x) ÷ a dx


= 2/3 ∙ (x + a)^(3/2) + 2/3 ∙ x^(3/2) ÷ a


= 2 ÷ (3 ∙ a) ∙ ((x + a)^(3/2) + x^(3/2))


Eddie 


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


HP 21S and TI-84 Plus CE: Normal Distributions and Hypothesis Tests

HP 21S and TI-84 Plus CE: Normal Distributions and Hypothesis Tests Let’s compare how calculations involving the normal distribution ar...