------------
Welcome to March Calculus Madness!
------------
Integration by parts to the rescue!
∫ ln^2 x dx
u = ln^2 x, dv = dx
du = 2 * ln * 1/x dx, v = x
∫ ln^2 x dx
= x * ln^2 x - ∫ 2 * ln x * 1/x * x dx
= x * ln^2 x - ∫ 2 * ln x dx
u = ln x, dv = 2 dx
du = 1/x dx, v = 2 * x
= x * ln^2 x - (2 * x * ln x - ∫ 1/x * 2 * x dx)
= x * ln^2 x - (2 * x * ln x - ∫ 2 dx)
= x * ln^2 x - 2 * x * ln x + ∫ 2 dx
= x * ln^2 x - 2 * x * ln x + 2 * x + C
∫ ln^3 x dx
u = ln^3 x dx, dv = dx
du = 3 * ln^2 x dx, v = x
= x * ln^3 x - ∫3 * ln^2 x * 1/x * x dx
= x * ln^3 x - 3 * ∫ ln^2 x dx
= x * ln^3 x - 3 * (x * ln^2 x - 2 * x * ln x + 2 * x + C)
(see the above)
= x * ln^3 x - 3 * x * ln^2 x + 6 * x * ln x - 6 * x + D
(where D = 3 * C, C and D are constants)
Eddie
All original content copyright, © 2011-2022. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.