Sunday, September 25, 2022

Proving Chebyshev Polynomial Closed Formulas for n = 0, n = 1, and n = 2

Proving Chebyshev Polynomial Closed Formulas for n = 0, n = 1, and n = 2



Chebyshev Polynomials of the First Kind


Recurrence Definition:


T_0(x) = 1

T_1(x) = x

T_n+1(x) = 2 * x * T_n(x) - T_n-1(x)


Closed Definition:


T_n(x) = 1/2 * [ (x - √(x^2 - 1))^n + (x + √(x^2 - 1))^n ]


Let: w = √(x^2 - 1)


T_n(x) = 1/2 * [ (x - w)^n + (x + w)^n ]


n = 0

T_0(x) 

= 1/2 * [ (x - w)^0 + (x + w)^0 ]

= 1/2 * [ 1 + 1 ] 

= 1


n = 1

T_1(x)

= 1/2 * [ (x - w)^1 + (x + w)^1 ]

= 1/2 * [ x - w + x + w ]

= 1/2 * [ 2 * x]

= x


n = 2

T_2(x)

= 1/2 * [ (x - w)^2 + (x + w)^2 ]

= 1/2 * [ x^2 - 2*w + w^2 + x^2 + 2*w^2 + w^2 ]

= 1/2 * [ 2 * x^2 + 2 * w^2 ]

= x^2 + x^2 - 1

= 2 * x^2 - 1



Chebyshev Polynomials of the Second Kind


Recurrence Definition:


U_0(x) = 1

U_1(x) = 2 * x

U_n+1(x) = 2 * x * U_n(x) - U_n-1(x)


Closed Definition:


U_n(x) = [ (x + √(x^2 - 1))^(n + 1) - (x - √(x^2 - 1))^(n + 1) ] ÷ [ 2 * √(x^2 - 1) ]


Let: w = √(x^2 - 1)


U_n(x) = [ (x + w)^(n + 1) - (x - w)^(n + 1) ] ÷ [ 2 * w ]


n = 0

U_0(x)

= [ (x + w)^(1) - (x - w)^(1) ] ÷ [ 2 * w ]

= [ x + w - x + w ] ÷ (2 * w)

= (2 * w) ÷ (2 * w)

= 1


n = 1

U_1(x)

= [ (x + w)^(2) - (x - w)^(2) ] ÷ [ 2 * w ]

= [ (x^2 + 2 * x * w + w^2) - (x^2 - 2 * x * w + w^2) ] ÷ (2 * w)

= [ 4 * x * w ] ÷ (2 * w)

= 2 * x


n = 2

U_2(x)

= [ (x + w)^(3) - (x - w)^(3) ] ÷ [ 2 * w ]

= [ x^3 + 3*x^2*w + 3*x*w^2 + w^3 - (x^3 - 3*x^2*w + 3*x*w^2 - w^3)] ÷ [ 2*w ]

= [ x^3 + 3*x^2*w + 3*x*w^2 + w^3 - x^3 + 3*x^2*w - 3*x*w^2 + w^3] ÷ [ 2*w ]

= [ 6*x^2*w + 2*w^3 ] ÷ [ 2*w ]

= [ 6*x*√(x^2 - 1) + 2*(x^2 - 1)^(3/2) ] ÷ [ 2*√(x^2 - 1)  ]

= [ 6*x*√(x^2 - 1) + 2*(x^2 - 1)*√(x^2- 1) ] ÷ [ 2*√(x^2 - 1)  ]

= [ 6*x*√(x^2 - 1) + 2*(x^2 - 1)*√(x^2- 1) ] ÷ [ 2*√(x^2 - 1)  ]

= [ 6*x*√(x^2 - 1) + (2*x^2 - 2)*√(x^2- 1) ] ÷ [ 2*√(x^2 - 1)  ]

= [ (8*x - 2)*√(x^2 - 1) ] ÷ [ 2*√(x^2 - 1)  ]

= 4*x^2 - 1


Good that the closed formulas hold up, at least for n = 0, 1, 2.   The closed formulas would be good if you don't want to use recurrence relations.  


Sources:


"Chebyshev polynomials"  Wikipedia.   https://en.wikipedia.org/wiki/Chebyshev_polynomials  Last Updated July 20, 2022.  Last Accessed June 21, 2022


Oldman, Keith, Jan Myland, & Jerome Spainer  An Atlas of Functions: with Equator, the Atlas Function Calculator  2nd Edition   Springer:  New York, NY.  2009  ISBN 978-0-387-48806-6


Eddie


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


  Casio fx-7000G vs Casio fx-CG 50: A Comparison of Generating Statistical Graphs Today’s blog entry is a comparison of how a hist...