This is a collection of programs I wrote on the Casio fx-5800p. These programs *should* also work on any Casio Graphing calculator (fx-9860g, fx-9750g, Prizm) since the programming language between Casio calculators remains largely the same.

Now if I can find my fx-5800p that I misplaced last night... *sigh*. Thank goodness for notes!

Notes for the fx-5800p programs:

There are no SIGN or MOD functions. Here are the work arounds I used (see SUN):

SIGN(x):

...

X > 0 ⇒ 1 → X

-X > 0 ⇒ -1 → X

...

n MOD d:

...

N - D Intg( N ÷ D ) → *result variable*

....

Table of Contents:

1. Rotation of (x, y) (ROTATEXY)

2. Law of Cosines (COSINES)

3. Pendulum: Period and Average Velocity (PENDULUM)

4. Arc Length of a Parabola (QUADLENGTH)

5. Position of the Sun (SUN)**1. fx-5800p: ROTATEXY**

Rotates the coordinate (X, Y). The direction of rotation follows the conventional direction (counterclockwise). The variable A represents the angle (θ).

Program:

"X"? → X

"Y"? → Y

"ANGLE"? → A

[ [ X, Y ] ] × [ [ cos(A), sin(A) ] , [ -sin(A), cos(A) ] ]**2. fx-5800p: COSINES**

Sides: D, E, F

Corresponding Angles: A, B, C

Program:

Lbl 0

Cls

"KNOWN:"

"1. D,E,F"

"2. A,E,F"

?→I

I = 1 ⇒ Goto 1

I = 2 ⇒ Goto 2

Goto 0

Lbl 1

"D"? → D : "E"? → E : "F"? → F

"A" : cos ⁻¹ (( E ² + F ² - D ² ) ÷ ( 2EF )) → A ◢

"B": cos ⁻¹ (( D ² + F ² - E ² ) ÷ ( 2DF )) → B ◢

"C" : 180° - A - B

Stop

Lbl 2

"A"? → A : "E"? → E : "F"? → F :

"D": √ (E ² + F ² - 2 E F cos A ) → D ◢

"B" : cos ⁻¹ ( ( D ² + F ² - E ² ) ÷ (2DF)) → B ◢

"C": 180° - A - B **3. fx-5800p: PENDULUM **

Variables:

D = length of the step or bar holding the pendulum

L = length of the rod or string that is swinging

R = large radius of the circular ring

At the units, enter 0 for US units (set g = 32.174 ft/s^2), anything else for SI units (g = 9.80665 m/s^2).

Calculated:

T = period of the pendulum (the amount of time it takes for the pendulum from one end to the other)

V = average velocity of the pendulum (once in its in full swing)

Program:

Cls

"=0 U.S."

"≠0 SI"

? → G

If G = 0

Then 32.174 → G

Else g → G IfEnd // g from the constant menu (9.80665)

Lbl 0

Cls

"1. ROD 2. STRING"

"3. RING"

?→ I

I = 1 ⇒ Goto 1

I = 2 ⇒ Goto 2

I = 3 ⇒ Goto 3

Goto 0

Lbl 1

"D"? → D : "L"? → L

2 π √( L ÷ 3G ) → T : Goto 4

Lbl 2

"D"? → D : "L"? → L

2 π √(L ÷ G) → T : Goto 4

Lbl 3

"D"? → D : "L"? → L : "R"? → R

2 π √( R ² ÷ GL → T : Goto 4

Lbl 4

"T =" : T ◢ "V =": D ÷ T → V

-----

Test Examples:

Rod: D = 1 m, L = 1.6 m. Results: T = 14.36943096 sec, V = .0695921782 m/s

String: D = 2 m, L = 1.75 m. Results: T = 2.65423008 sec, V = .07535141995 m/s

Circular Ring: D = 2 ft, L = 2 ft, r = 1.2 ft

Results: T = 1.879851674 sec, V = 1.063913727 m/s** 4. fx-5800p: QUADLENGTH **

Find the length of a parabola given height and width and a corresponding equation:

f(x) = Ax^2 + Bx

Where

A = -4h/l^2

B = 4h/l

Program:

Cls

"LENGTH"? → L

"HEIGHT"? → H

Cls

"COEF OF X ²"

-4 H ÷ L ² ◢

"COEF OF X"

4 H ÷ L ◢

"ARC LENGTH"

∫ ( √ ( 1 + ( -8 H X ÷ L ² + 4 H ÷ L ) ) , 0, L)

Test Data:

L: 16.4, H: 8.2

X^2 coefficient: -.1219512195

X coefficient: 2**5. fx-5800P: SUN**

Source for the formulas: http://aa.usno.navy.mil/faq/docs/SunApprox.php

Gives the RA (right ascension) and δ (declination) of the sun at any date. U is the universal time, the time it would be at Greenwich Village (Int'l Date Line).

For the Pacific Time Zone:

Standard Time: PST + 8 hours = UT

Daylight Savings Time: PDT + 7 hours = UT

Program:

"MONTH"? → M

"DAY?" → D

"YEAR"? → Y

"UNIV. TIME"? → U

Deg

100 Y + M - 190002.5 → X

X > 0 ⇒ 1 → X

-X > 0 ⇒ -1 → X

367 Y - Intg( 7 ( Y + Intg( ( M + 9 ) ÷ 12 ) ) ÷ 4 )

+ Intg( 275 M ÷ 9 ) + D + 1721013.5 + U ÷ 24

- .5 X + .5 → D

D - 2451545 → D

357.529 + .98560028 D → G

G - 360 Intg( G ÷ 360 ) → G

280.459 + .98564736 D → Q

Q - 360 Intg( Q ÷ 360 ) → Q

Q + 1.915 sin( G ) + .02 sin( 2G ) → L

L - 360 Intg( L ÷ 360 ) → L

1.00014 - .01671 cos( G ) - .00014 cos( 2 G ) → R

23.439 - .00000036 D → E

tan ⁻¹ (cos(E) tan(L)) → A

If L ≥ 90 And L < 270

Then A + 180 → A

IfEnd

If L ≥ 270 And L < 360

Then A + 360 → A

IfEnd

A ÷ 15 → A

sin ⁻¹ ( sin(E) sin(L) ) → C

"APPROX:"

"RA (HRS)": A ◢

"DEC (DEG)": C

Test Data:

M: 5

D: 14

Y: 2014

U: 19

RA: 3.43 hours

DEC: 18.746°

Eddie

This blog is property of Edward Shore. 2014

A blog is that is all about mathematics and calculators, two of my passions in life.

## Friday, May 16, 2014

### fx-5800p Programs (can apply to Casio graphing calculators also, e.g. fx-9860g, Prizm)

### Casio fx-991CW: Input Output Formats

Casio fx-991CW: Input Output Formats The Four Formats There are four input/output formats that the Casio fx-991CW has. With eac...